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A two-dimensional liquid droplet placed on a non-uniformly heated solid surface will 
move towards the region of colder temperatures if the temperature gradient in the solid 
surface is large enough. Such behaviour is analysed for a thin viscous droplet using 
lubrication theory to develop an evolution equation for the shape of the droplet. For 
the small mobility capillary numbers examined in this work, the contact-line motion is 
controlled by a dynamic relationship posed between the contact-line speed and the 
apparent contact angle. Results are obtained numerically and also approximately using 
a perturbation technique for small heating. The initial spreading or shrinking of the 
droplet when placed on the heated solid is biased toward the direction of decreasing 
temperature on the solid. Possible steady-state responses are either a motionless 
droplet or one moving at a constant velocity down the temperature gradient without 
change in shape. These behaviours are the result of a thermocapillary recirculation cell 
inside the droplet that distorts the free surface and alters the apparent contact angles. 
This change in the apparent contact angles then modifies the contact-line speed. 

1. Introduction 
Thin liquid films and droplets are important elements in some heat transfer 

equipment designs such as heat exchangers, evaporators, condensers, and heat pipes. 
It is important to know how such thin liquid masses behave in these devices, especially 
with regard to the thermal fields that are present. Thus, the spreading of droplets and 
films and the influence of imposed temperature fields is a research area of fundamental 
importance. 

When a liquid droplet is placed on a smooth isothermal solid surface it will spread 
or contract to an equilibrium shape in which the capillary and hydrostatic pressure fields 
are balanced inside the droplet. The behaviour of the liquid during the spreading 
process is controlled by the motion of the contact lines where the liquid, the solid, and 
the bounding gas meet. The importance of this contact-line region and the difficulties 
in modelling it have been well reviewed by Dussan V. (1979) and de Gennes (1985). 
This region and its effect on the overall motion of the droplet can be modelled in 
several different ways, as discussed by Ehrhard & Davis (1991). One way is to allow the 
fluid to slip at the contact line. This condition is ad hoc, but it relieves a stress 
singularity that appears in the flow field if the no-slip boundary condition is used. In 
addition to slip, a condition for the actual contact angle (measured on a micron-sized 
slip-length scale) versus the contact-line speed must be specified. Using these 
conditions, the flow field very near the contact line is found and then matched to the 
flow in the bulk of the droplet. One major debate about this slip model is concerned 
with the form of the contact-angle condition. One could use a static condition in which 
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the contact angle is fixed at its equilibrium value for all contact-line speeds, or a 
dynamic condition in which the actual contact angle varies with speed. Hocking (1992) 
compared the static and the dynamic contact-angle conditions and concluded that 
given a specific form of the dynamic condition, both models can predict the observed 
behaviour of a spreading droplet. He then argued that given no specific experimental 
evidence for this choice of the dynamic condition, there is no reason to use it and so 
the simpler static condition should be used instead. 

Another modelling technique for the contact-line region is based on the idea that a 
thin precursor film extends ahead of the apparent contact line of the droplet. Molecular 
effects are important in this thin fdm, and will essentially control the motion of the 
main body of the droplet over the solid surface. In this approach, there is no real 
contact line, only an apparent contact line and an apparent contact angle because the 
precursor film is too thin to see. 

The last modelling scheme is to represent the entire contact-line region with an 
effective dynamic contact-line condition imposed on the bulk droplet. This approach is 
useful when only the bulk fluid motion is of interest and it can actually encompass the 
previous two models. The basis of the model is to examine the fluid motion very near 
to the real or apparent contact line and to characterize it either theoretically or 
experimentally. Then an effective boundary condition for the velocity of the contact 
line as a function of the apparent contact angle (measured on a millimetre-sized 
capillary-length scale) is constructed. This condition is used to drive the motion of the 
fluid in the bulk of the droplet. In this model, the entire effect of the small-scale physics 
near the contact line, whether it is slip, a precursor film, or anything else, is 
communicated to the bulk of fluid via the dynamic contact-line boundary condition. 
The small-scale physics does not need to be considered anywhere else. Hocking (1992) 
derived such a dynamic condition from the slip model and de Gennes (1985) derived 
it from the precursor-film model. The series of papers by Ngan & Dussan V. (1989), 
Dussan V., Ram6 & Garoff (1991), and Marsh, Garoff & Dussan V. (1993) investigated 
this dynamic contact-line boundary condition experimentally. Their results show that 
a geometry-independent relation involving the apparent contact angle is impossible, 
but that a dynamic contact-line condition involving an intermediate contact angle 
measured on a length scale somewhere between those used to measure the apparent 
and the actual contact angle is possible. Note that a model using a dynamic contact- 
line boundary condition based on the apparent contact angle and a slip model using 
a dynamic contact-angle relation for the actual contact angle can produce identical 
results to leading order. This fact has produced some confusion in interpreting the 
results of these models. 

We shall use this third approach in the present paper. We assume for a specific 
liquid, solid, and gas combination in a specific geometry that the proper dynamic 
contact-line boundary condition can be found, either experimentally or analytically. 
We use an apparent contact angle in this relation and remember that it applies only to 
the specific geometry under consideration. Once this dynamic contact-line condition is 
In hand, the bulk motion of a thin viscous droplet is determined by examining only the 
motion in the bulk of the droplet. The small-scale details of the flow very near the 
contact line will not be considered. The resulting leading-order approximation is much 
simpler to deal with and should adequately describe the bulk motion of the droplet. 

The spreading droplet problem has been well-studied by a number of different 
authors. Hocking (1983), Hocking & Rivers (1982), and Haley & Miksis (1991) have 
examined an isothermal droplet spreading under the influence of gravity and 
capillarity. This work involves the use of a slip boundary condition at the contact line, 
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local solutions near the contact line, and global matching to determine the motion of 
the bulk droplet. Ehrhard & Davis (1991) extended this model by considering a 
spreading droplet with uniform heating or cooling of the solid surface. In their work, 
they used a slip model with the dynamic contact-angle relation for the motion of the 
contact line discussed by Dussan V. (1979). Their results showed that when the solid 
is heated, a thermocapillary flow forms that is directed from the contact lines towards 
the top of the droplet. This flow reduces the contact angles and inhibits spreading. 
Cooling the solid has exactly the opposite effect. 

Greenspan (1978) also considered the spreading of a thin droplet on a horizontal 
surface, but used a simpler dynamic model than the one used by Ehrhard & Davis 
(1991). He also considered a coated surface in which the equilibrium contact angle 
decreased with distance. With this model, he showed that a droplet could be made to 
migrate down the plate in the direction of decreasing equilibrium contact angle. 
Chaudhury & Whitesides (1992) showed experimentally that this kind of behaviour is 
possible by making a droplet of water move uphill on a coated inclined plate. 

The present paper generalizes the work of Ehrhard & Davis (1991) to include a 
migration effect similar to that seen by Greenspan (1978). A thin two-dimensional 
liquid droplet on a non-uniformly heated horizontal plate is considered. In particular, 
the temperature of the plate decreases linearly in one direction. This heating produces 
a themocapillary flow inside the droplet that modifies the contact angles. We use the 
same dynamic contact-angle relation used by Ehrhard & Davis (1991), but since we are 
only concerned with the leading-order motion of the bulk droplet we pose the relation 
with respect to the apparent rather than the actual contact angle. We shall show that 
the spreading process is altered considerably by the heating, and that migration of the 
entire droplet down the temperature gradient is possible. 

In $2, the formulation of the model is presented and scaled in terms of the 
lubrication variables for a thin droplet. These governing equations are then solved to 
leading order for a thin droplet to produce an evolution equation for the shape of the 
free surface. This in turn is simplified by taking the limit of either a small spreading rate 
or a large surface tension. The result is a nonlinear equation for the shape of the free 
surface. We describe the solution of this equation both asymptotically and numerically 
in $ 3. When this solution is coupled to the dynamic contact-line boundary condition, the 
result describes the overall motion of the contact lines and therefore the bulk drop- 
let motion. These results are presented in $4. Our conclusions are summarized in $5. 

2. Formulation 
2.1. Basic governing equations 

Consider a two-dimensional liquid droplet on a horizontal non-uniformly heated solid 
surface, as shown in figure 1. A Cartesian coordinate system is used with the x-axis 
embedded in the solid surface and the z-axis normal to the solid surface. The droplet 
is composed of an incompressible Newtonian liquid with density p, dynamic viscosity 
p, specific heat cp,  and thermal conductivity k. It is bounded above by a passive gas at 
the temperature T, that can convectively heat or cool the droplet. The velocity u = 
(u, w), pressurep, and temperature Tin the droplet are governed by the Navier-Stokes, 
continuity, and energy equations, 

p{ut + (V . V)V} = - Vp -pgk +pV2v, 
V - v  = 0, pc,{T+t,.VT} = kV2T, 

where k = (0,l) is a unit vector in the z-direction. 
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FIGURE 1 .  The geometry of a two-dimensional liquid droplet. 

The free surface of the liquid is located at z = h(x, t) .  The boundary conditions 
imposed on this surface are the kinematic condition, the normal- and tangential-stress 
balances, and an energy balance as follows: 

w = h,+uh,, t - S n  = t - V u ,  n*Sn = - u ~ ,  -kVT*n = h,(T-T,). (2a-d) 

Here, S is the stress tensor for the liquid, u is the surface tension of the free surface, 
h, is the convection heat transfer coefficient for the free surface, and the subscripts x 
and t refer to partial differentiation. The unit normal and tangent vectors, n and t ,  and 
the curvature of the free surface K in these boundary conditions are defined as 

n = ( - h,, 1)/( 1 + h:)'l2, t = (1, h J / (  1 + K = - h,J( 1 + (3 a-c) 

The effect of thermocapillarity is modelled by assuming that the surface tension 
depends linearly on the temperature of the liquid 

u = uo - y( T -  &), (4) 

where y > 0 is the negative of the rate of change of surface tension with temperature, 
T, is the reference temperature, and uo is the surface tension at the reference 
temperature. 

The boundary conditions imposed on the solid surface at z = 0 are the slip condition, 
the no-penetration condition, and a fixed-temperature-gradient condition, 

u = f a u / i k ,  w = 0, T =  &-bx,  (5  a-4 
where p' is the slip coefficient and b = -dT/dx is the imposed temperature gradient. 
Although slip is not needed in our model for the droplet motion away from the contact 
lines, we include it at this stage for comparison to previous and related work on 
spreading droplets with the slip model. 

The contact line on the right is located at the point x = c,(t) and the one on the left 
is at x = cr(t). The conditions of contact for the free surface at these points are 

h(ca, t )  = 0, h(cr, t )  = 0. (6a,  b) 

The apparent contact angles 8, and 8, at the corresponding contact lines are found 
from the relations 

h,(c,, t )  = -tan e,(t), hx(cr, t )  = tan Or(?). (6c, d )  

At each contact line, the fluid velocity is equated to the velocity of the contact line 
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Ucl. The relationship between the contact-line speed and the actual contact angle 
discussed by Dussan V. (1979) and used by Ehrhard & Davis (1991) is 

where K and m are constants, and 8, and 8, are the advancing and receding static 
contact angles. We pose this relationship at each contact line using the apparent 
contact angle. 

The last condition imposed is that the volume of the droplet V, remains constant, 

v, = c""" h(x, t)dx. (7) 
J c,(t) 

2.2. Scaling 
The differential equations and boundary conditions (1x7)  together with the 
appropriate initial conditions on the shape and position of the droplet completely 
define the motion of the droplet. To facilitate a solution of these equations in the limit 
of a thin droplet, scaling similar to those of Ehrhard & Davis (1991) are used as 
follows : 

Here, 8, = 8, is chosen as a measure for the contact angles in this problem, L = 
( v,/8,)'/2 is a length scale based on the constant volume of the droplet, the velocity 
scale is based on the contact-line speed, and a convective time scale and a viscous 
pressure scale are used. 

The dimensionless groups that arise from this scaling, appropriate to the evolution 
equation that follows, are the Bond number G =pgL2/uo,  the Biot number 
B = h, LOJk, the mobility capillary number C = pK/ (ao  8,"-m), the thermocapillary 
number 

the slip number /? = p'/(8, L), and the dimensionless imposed temperature gradient N 
= bL/( T, - T,). For clarity, we shall use eA = 1 as the scaled advancing contact angle 
and gR as the scaled receding contact angle. 

fK = p K / [ r ( &  - T,) @ Y I ,  

2.3. Evolution equation 
The equations and boundary conditions (1x7)  are made dimensionless with the scales 
given in (8). From here on, all variables are considered dimensionless and the asterisk 
superscript is dropped for simplicity. The thin-drop limit 8, --f 0 is used to obtain the 
appropriate lubrication equations. These are the same as the equations presented in 
Ehrhard & Davis (1991), except for the prescribed temperature condition on the solid 
surface z = 0, 

T =  l-Nx. (9) 

These lubrication equations describe a horizontal inertialess flow in the droplet driven 
by the horizontal gradient of the hydrostatic pressure and the thermocapillary stress on 
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the free surface, a vertical velocity determined through continuity, a hydrostatic 
pressure field determined by the height of the droplet and the capillary pressure at the 
free surface, and a conduction-dominated vertical heat transfer through the droplet. 

The evolution equation for the shape of the droplet is derived from these lubri- 
cation equations. It is essentially a vertically averaged continuity equation of the form 
h, + q, = 0, where q is the net longitudinal flow in the droplet. For the present problem, 
this evolution equation is 

(hzz - Gh),($h3 + Ph2) + 

The corresponding velocity, pressure, and temperature in the droplet are 

u =p,[;~"h(z+/3)]+ SAC'(z+P), 

w = -p,.[~z3 - h(;z2 + Pz)] +pz h,(+z2 + Pz) - S, AC1(;z2 + Pz), 
p = - C-'[h,, + G(z - h)], 

T = (1 - Nx) [ 1 + B(h - z)]/( 1 + Bh), 

with the quantity S defined as 

S = -  N Bh,(l -Nx)  
1+Bh+ (1+Bh)2 . 

The shape of the droplet and its motion along the solid surface are described by the 
solution of the evolution equation (1 0), together with the corresponding dimensionless 
forms of the contact-line conditions (6), the constant-volume condition (7), and the 
appropriate initial conditions. Once this is known, the velocity, pressure and 
temperature fields are computed from ( 1  1 ) .  

2.4. The limit of small mobility capillary number 
The spreading rates of interest in many problems are on the order of microns per 
second, resulting in mobility capillary numbers that are very small. This justifies an 
examination of the evolution equation (10) in the limit of C+O. The formal limit 
removes the time-derivative term in the evolution equation making it a nonlinear 
equation determining a steady droplet shape for a given droplet width. The droplet 
evolves as the contact lines move according to the dynamic condition (6e). This motion 
alters the width of the droplet and with it the shape of the free surface. This kind of 
quasi-steady evolution was discussed by Rosenblat & Davis (1985). Ehrhard & Davis 
(1991) used this limit to examine the quasi-steady evolution of a uniformly heated 
droplet. The small-C limit also neglects a small initial layer in time during which the 
free surface evolves from an arbitrary initial shape to the shape given by the leading- 
order approximation. This evolution is of no interest in this work. 

A further consequence of the small-mobility-capillary-number limit involves the 
modelling assumptions in the contact-line region. For the slip model with a dynamic 
variation of the actual contact angle, the leading-order approximation of the droplet 
shape is one of no contact-line motion. With the contact lines fixed, the singularity 
associated with a moving contact line disappears and so slip is not needed. Thus, the 
slip number /3 can be set to zero and the actual contact angle is identical to the 
apparent contact angle. The contact-line motion is then driven by a dynamic boundary 
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condition that is identical to that used in the dynamic contact-line boundary condition 
model. In other words, both contact-line models are identical to leading order in this 
small-mobility-capillary-number limit and we shall not differentiate between the actual 
and the apparent contact angles any further. However, if the solution for the free- 
surface shape was pursued as a perturbation expansion in C, slip would be needed 
beyond the leading-order approximation in the slip model, and the second model 
would need a dynamic contact-line boundary condition valid to this next order. 

Two further simplifications are used. The first is that the Biot number is very small, 
since the droplets under consideration are very small. The second is that Nx Q 1. This 
is equivalent to saying that the temperature difference in the droplet from end to end 
is smaller than the temperature difference between the average temperature in the 
droplet and the temperature of the surrounding gas. Note that if the same temperature 
gradient is imposed on both the solid and the gas above the droplet, but slightly shifted 
so that there is always a constant temperature difference between the two, then the 
single assumption that the Biot number is small would result in the same simplified 
evolution equation given below. No restrictions on the imposed temperature gradient 
would be needed. 

The evolution equation (10) with C+O is now integrated once to yield q = C,. At 
this order the droplet shape is steady and so the constant of integration must be zero 
by conservation of mass. The resulting equation with the above parameter 
simplifications is 

( 1 2 4  
with the parameters 

Equation (12a) for the droplet shape is autonomous in x. To simplify the corresponding 
boundary conditions, the origin is redefined to lie on the centreline of the droplet 
C(t) = +(c,+cI), and a(t) = t(c,-c,) is defined to be the half-width of the droplet. 
The shape equation (12a) is then solved subject to the contact conditions 

(hzz - Gh), +%IT+ A h z )  h-' = 0,  

3 = CN/AC and A? = CBIAC. (12b) 

h( -a)  = 0, h(a) = 0, (12c7 4 
and the constant-volume condition 

1 = l a h ( x ) d x .  

Once the shape of the droplet is known, the two contact angles are found from the 
relations 

The right contact line is then advanced in time according to the relation 

e,(t) = -&(a), e,(t) = &(-a). (13a7 b)  

(e, - 8A)m, ea > GA 
- (QR - e, < GR, 

and the left contact line according to 

-(e,-@A)m, e, > iJA 
dt (QR - e,)m, 8, < 8,. 

The time variation of the half-width and the centreline position are found by 
integrating (13c) and (13d)  and using the definitions of a(t) and q t ) .  
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3. Solution methods 
3.1.  Asymptotic solution 

The shape equation and boundary conditions in (12) with G = 0 are solved using a 
regular perturbation expansion for small i$? and 6. The resulting approximation for the 
shape of the droplet is 

3(a2 - xz )  
4a3 

+ &{x2 - a2 + %a2 + x2)  In (2a) -:(a - x)' In (a  - x )  -%a + x)' In (a  + X I >  

+ fi{2a3x In (2a) +$a2(. - x)' In (a  - x )  - $aZ(a + x)2 In (a  + x)> 

h =  

+ &if{ga6x In (2a) + :a5(<. - x12 In (a - x) - ia5(a + x)2 In (a  + x) )  + . . . . (14) 
The front and rear contact angles are 

3 
&+a3fi+gas&fi+ ..., 8 = - - -ai$?-a3fi-ga6kif+ ... . (15a, b) 

3 6 = - - - a  
a 2a2 2a2 

We recover the result of Ehrhard & Davis (1991) when fi = 0. 

3.2. Numerical solution 
A numerical solution for the free-surface shape was obtained by solving the nonlinear 
differential equation (1 2 a)  iteratively using a Newton-Kantorovich method as 
described by Boyd (1989). Briefly, (12a) was differentiated with respect to h, h,, and 
h,,,, and then expanded in a Taylor series with respect to these three functions. The 
series was truncated after the linear terms and set to zero to form a third-order linear 
differential equation for A ,  the difference between the true solution and the current 
approximate solution. The coefficients of this equation depend on the current 
approximate solution. The difference function A was expanded in a set of basis 
functions based on Chebyshev polynomials. These basis functions were formulated to 
satisfy the contact conditions (1 2 c, 6) and the constant-volume condition (12e). The 
linearized equation is then solved using standard pseudospectral methods. The result 
is added to h to form the next approximate solution. The iteration is continued until 
convergence, which is when the sum of the absolute value of A at all collocation points 
is less than lo-''. Fifty or one hundred collocation points were used in the results 
reported in this work. 

The numerical solution of the droplet shape with 50 basis functions was compared 
to the exact result of Hocking (1983) for an isothermal droplet. With G = 2 and a = 1 
or 2, the difference was less than at each collocation point. This was an easy test 
because there is no singularity at the contact line for this case. 

Next, the numerical results with 50 basis functions were compared to the 
perturbation approximation obtained above. For small A?, fi = 0, and a = 1 ,  the 
difference in the droplet shape behaved like O(*) and was less than for & = 0.1. 
The difference in the contact angles behaved like just less than O(*) and was about 

for & = 0.1. For small if, k = 0, and a = 1, the difference in the droplet shape 
behaved like O($) and was less than 1.5 x lo-' for 6 = 0.1. The difference in the 
contact angles behaved like just less than O($) and was about 2 x for fi = 0.1. 
For larger values of the droplet width the actual errors for both cases are worse than 
before, but they are still asymptotically correct for small & and A. 

Some results based on the numerical solution and the asymptotic approximation are 
compared graphically in the figures discussed in the next section. These figures show 
the extent of validity of the asymptotics. 
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4. Results 
The purpose of this paper is to describe the motion of the contact lines of the droplet 

in response to the non-uniform heating of the solid surface. Given the way the present 
model has been posed, the contact-line motion is entirely determined by the apparent 
contact angles. These in turn are influenced by the flow field in the droplet. Ehrhard 
& Davis (1991) studied the case in which I? = 0 and A? =+ 0, a uniform heating or 
cooling of the solid surface. When the solid is heated, the temperature decreases along 
the free surface of the droplet from each contact line to the top of the droplet. This 
produces two thermocapillary recirculation cells in the droplet, with the flow along the 
free surface directed towards the top of the droplet, and the flow along the solid surface 
directed towards the contact lines. This flow tends to reduce the two contact angles, 
which then consequently reduces the contact-line speed and inhibits spreading. The 
shape of the droplet for this case remains symmetric. 

Now, consider an imposed temperature gradient on the solid surface I? > 0 and no 
overall heat transfer to the overlying gas ~ = 0. Here, the temperature decreases along 
the free surface of the droplet from the left contact line all the way to the right contact 
line. This produces a thermocapillary surface flow in the droplet directed from the left 
to the right contact line. As the surface flow moves toward the right contact line, the 
fluid is deflected by the solid to form a return flow along the solid surface that is 
directed back toward the left contact line. This results in single themocapillary 
recirculation cell rotating in the clockwise sense. Such a flow ensures that there is 
conservation of mass in the quasi-steady motion of the droplet. The pressure field 
driving this return flow causes the right end of the droplet to bulge outward, which 
increases the right contact angle, while the left end of the droplet bulges inward so that 
the left contact angle decreases. It is through these changes that the contact-line speed 
is modified. 

The results discussed in this section all depend on the degree to which the 
thermocapillary flows described above modify the contact angles. For simplicity in the 
discussion, a number of system parameters are fixed. There is no gravity G = 0 unless 
otherwise stated, 6, = 1 from the scaling of this problem, and aR = 0.8 is the receding 
contact angle except where noted. The spreading exponent m = 3 is chosen because it 
agrees with the spreading experiments of Tanner (1979), Chen (1988), and Ehrhard 
(1993), it agrees with the experiments of Marsh et al. (1993), it is suggested by the 
analysis of Hocking (1992) and de Gennes (1985), and because it was also used in the 
analysis of Ehrhard & Davis (1991). 

4.1. Initial response 
Consider an isothermal system composed of the droplet, the solid surface, and the 
surrounding gas. In this system, the droplet will spread to an equilibrium configuration 
in which both contact angles equal the advancing contact angle. From the contact- 
angle relations (1 5),  the droplet half-width in this situation is 

(16) 
With the droplet in this equilibrium configuration, the solid is heated at time zero by 
imposing a constant temperature gradient on its surface. Because of the droplet’s small 
mobility capillary number, the velocity and temperature fields within the droplet and 
the droplet shape reach their steady-state values based on the initial droplet width 
before either of the contact lines move. In terms of the motion of the contact lines, this 
droplet shape is called the initial shape. The motion of the contact lines is driven by the 
initial shape according to the relations (13c, d ) .  If the contact angle is larger than the 

a = (3/(2gA))1/2 = (3/2)lI2. 
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FIGURE 2. Parameter plot for the initial behaviour of a droplet with G = 0, gA = 1, and GR = 0.8. Solid 
lines are the numerical results and dashed lines are the asymptotic approximations. The marked 
regions are: I, two-sided spreading; 11, no motion; 111, two-sided shrinking; IV, one-sided spreading; 
V, one-sided shrinking; VIa, droplet migration with spreading; VI b, droplet migration with 
shrinking; and VII, invalid model behaviour. The cuyes a_re marked as follows: 0, 8, = gA; U, 
8, = gR; 0, 8, = 0 ;  0,  8, = gA; ., 8. = G8; A, 8,-8, = 8,-8,. The small droplet schematics to 
the right of the figure indicate the direction and relative magnitude of the contact-line motion in each 
of the marked regions. 

advancing angle, the contact line is said to advance, if it is between the advancing and 
receding contact angle, the contact line is motionless, or pinned, and if the contact 
angle is less than the receding angle, the contact line recedes. 

The possible initial responses for the droplet described above are shown in figure 2. 
In this figure, the solid lines represent the results of numerical calculations and the 
dashed lines are found from the perturbation approximation. The lines are the result 
of finding the value of fi for a fixed droplet width and a given h? for which the right 
or left contact angle equals the advancing or receding contact angle or zero, or when 
they satisfy an equal-velocity condition as indicated in the figure caption. The 
equations for the lines obtained from the perturbation approximation are shown in the 
Appendix. Note that the asymptotic results are quite good near the origin of the plot 
as expected, but they deviate from the numerical results for large values of A? and G. 
The solid lines divide the figure into seven regions. The small droplet schematics to the 
right of the figure indicate the direction and relative magnitude of the contact-line 
motion in each of these regions. 

First, if both contact angles are larger than the advancing contact angle of the 
droplet, then both contact lines will advance away from the centre of the droplet. This 
is called two-sided spreading and it occurs for negative values of A? and small values 
of fi, which is the region marked I in figure 2. If both contact angles are less than the 
receding contact angle, then both contact lines will recede toward the centre of the 
droplet. This two-sided shrinking occurs in the region marked I11 in figure 2, which is 
for small fi and &? larger than some critical value. These two behaviours are in accord 
with the results of Ehrhard & Davis (1991) that say that uniform heating of the solid, 
&? > 0, reduces spreading while uniform cooling, &? < 0, promotes spreading. In 
between these two regions is a region marked I1 in which the contact angles are between 
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the advancing and receding contact angles. As a result, the contact lines are pinned and 
the bulk droplet stays motionless. However, there is still a thermocapillary flow inside 
the droplet, which produces an asymmetric shape. 

In region IV of figure 2, $ is large enough so that the left contact angle is between 
the advancing and receding angles, while the right contact angle is greater than the 
advancing contact angle. In this case, spreading occurs from the right side, but the left 
contact line is pinned on the solid. This is called one-sided spreading. 

In region V, k is positive and large enough to reduce the left contact angle so that 
it is less than the receding angle and the right contact angle is reduced so that it is 
between the advancing and receding contact angles. Thus, one-sided shrinking occurs 
in which the right contact line is pinned and the left contact line recedes and reduces 
the width of the droplet. 

For even larger values of the imposed temperature gradient, the left contact angle is 
reduced to a value less than the receding contact angle. Now, both contact lines will 
move to the right. This is the case of droplet migration. The speed of the contact lines 
is most likely different and so as the entire droplet moves, it also changes its width. In 
region VIa, the droplet begins to migrate, but it also stretches since the right contact 
line moves faster than the left. In region VIb, the droplet starts to shrink as it migrates. 
The asymptotic approximation of the boundary between stretching and shrinking is a 
straight vertical line as shown in figure 2. A second-order approximation is needed to 
bring in the curvature exhibited by the numerical result. 

The last type of initial response is delineated by region VII of figure 2 and occurs 
when the droplet is strongly heated. If the model is taken seriously, the strong heating 
causes the left contact angle to be less than zero. A droplet shape computed in this 
region would have a free surface that intersects the solid at a point other than the 
contact line. This unphysical result shows that the present model fails to represent the 
true behaviour of the droplet. This type of breakdown of the lubrication model was 
also seen in the liquid film rupture studies of Burelbach, Bankoff & Davis (1990) and 
Tan, Bankoff & Davis (1990). The curve GR = 0 forms the lower boundary of this 
region. It is very difficult to compute numerically because the free-surface shape 
oscillates very rapidly in this region and so it is difficult to stay with any one particular 
root. This is evidenced by the slightly jagged nature of the curve. The asymptotic 
approximation of the curve eR = 0 is so inaccurate that it was not included in the 
figure. 

There are several possibilities for the actual behaviour of the droplet in region VII : 
the droplet could still migrate at constant speed, a very thin film of liquid could form 
on the trailing edge of the droplet, the trailing film could rupture and form small 
droplets that appear to be shed from the main droplet, or the trailing film could just 
spread out the droplet into a very thin film on the solid. To investigate these possible 
behaviours, we must first modify our physical and/or numerical model. We could 
include additional physics into the model to prevent the free surface from penetrating 
the solid, such as van der Waals forces, or just completely abandon the lubrication 
model in this contact-line region. The numerical method may also be a fault and so we 
could use a technique that increases the local resolution of the computation in the left 
contact-line region. We shall not pursue these matters any further in this paper. 

4.2. Steady-state response 
Once a droplet begins to move according to the initial responses described above, its 
width will change. As the droplet stretches, the restriction of constant volume will force 
both contact angles to decrease. Shrinking causes both contact angles to increase. This 
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FIGURE 3. Parameter plot of A versus & for the steady-state behaviour of a droplet with G = 0, 
8, = 1, and $, = 0.8. Solid lines are the numerical results and dashed lines are the asymptotic 
approximations. Regiqn I, no motion; 11, constant-velocity migration; 111, invalid-model behaviour. 
0, 8, = 8, and 8, = 8,, which is the onset of droplet migration; 0, 8,-8, = 8,-8, and 8, = 0, 
which is the largest physically possible value of N. The small droplet schematics to the right of the 
figure indicate the direction and relative magnitude of the contact-line motion in each of the marked 
regions. 
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FIGURE 4. The half-width of a droplet corresponding to the two bounding curves shown in figure 3. 
Solid lines are th_e numerical results and the dashed line is the asympt_otic approximation. 0, 
8, = a, and 0, = OA, which is the onset of droplet migration; 0, 8,-8, = 8,-8, and 8, = 0, which 
is the largest physically possible value of N. 

behaviour modifies the speed of each contact line, which in turn modifies the stretching 
or shrinking of the droplet. After a sufficiently long time, the droplet may reach a 
steady state. Figure 3 is a parameter plot of the steady-state response of a droplet. In 
region I, the droplet is motionless because both contact angles are between the 
advancing and receding contact angles. To reach this condition, the droplet may 
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FIGURE 5. (a) The speed and (b)  the half-width o[a droplet, during constant-velocity migration, as 
a function of the im_posed temperature gradient N for various values of the parameter M and with 
G = 0 ,aA = 1, and 8, = 0.8. Solid lines are the numerical results and dashed lines are the asymptotic 
approximations. 

spread or shrink or do nothing depending on the initial configuration. The boundary 
of this region is given by the two conditions 8, = gA and Or = aR. The asymptotic 
approximation of the boundary of this region is very good over the entire parameter 
range of that was covered. In figure 4, the half-width of the droplet versus k 
corresponding to the curves shown in figure 3 are shown. As expected, the width of the 
droplet decreases as the _solid surface is heated above the temperature of the passive 
gas, i.e. for increasing M .  The asymptotic approximation of the half-width is only 
accurate near ~ = 0, in contrast to the previous figure. 

In region I1 of figure 3, the droplet moves at a constant velocity. There is an initial 
transient during which the width of the droplet either increases or decreases until the 
speeds of both contact lines are identical. After this point the droplet moves without 
change of shape. The upper boundary of this region is given by the constant-velocity 
condition, t!9,-gA = $R-t!9r ,  plus the condition gR = 0. The corresponding half-width 
of the droplet at this boundary is given in figure 4. The asymptotic approximation of 
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FIGURE 6. The streamlines y? and the free-surfa? profile (y? = 0) for a droplet in constant-velocity 
migration. The imposed temperature gradient is N = 0.2, a, = 1 ,  and gn = 0.8. The main recirculation 
cell has a clockwise rotation. The streamlines are plotted in increments of y? = - 0.0006, except where 
ncted. (a) M = 0, $,(, = -0.002825, = 0; (c) 
M = - 0 . 5 ,  y?,,,=-0.003232, y?,,,,=0.0001456; and(d) M=-1.0,  $,,,=-0.004035, 
0.000460 5. The small counterclockwise recirculation cell on the left of droplet ( d )  is plotted with the 
streamline $ = 0.0004. 

the curve fiversus &?in figure 3 is not very accurate, chiefly because Ais not very small, 
and the half-width curve in figure 4 is so inaccurate that it was not included in the 
figure. 

The region marked I11 in figure 3 is that in which the left contact angle is less than 
zero. As before, the model breaks down in this region and it is not investigated further 
in this paper. 

The velocity of a migrating droplet versus fi for various values of &? is shown in 
figure 5(u). The corresponding half-width of the droplet is shown in figure 5(b). This 
figure shows that as the imposed temperature gradient increases, the speed of the 
droplet increases monotonically and its width decreases monotonically. Also, given a 
fixed value of the imposed temperature gradient I?, decreasing the overall heating of 
the droplet to the passive gas (decreasing &?) increases both the droplet migration 
speed and width. 

The asymptotic approximation to the migration velocity is not very accurate for the 
larger values of fi and i$? as shown in figure 5(u). Figure 5(b) shows that a second- 
order approximation is needed to more accurately capture the behaviour of the droplet 
width. 

The flow field in a steady-state migrating droplet is shown in figure 6. In these plots, 
the imposed temperature gradient is held fixed at fi = 0.2, and it? decreases meaning 
that there is an overall cooling of the droplet by the solid. In figure 6(a), &? = 0 and 
the flow in the droplet takes the form of one clockwise recirculating cell. The cell fills 
the entire droplet and the flow on the free surface is from the left to the right, or from 
the hot end to the cold end. As i$? decreases, the fluid velocity near the free surface on 
the right side of the droplet is increased and the velocity on the left is decreased as 
suggested by the results of Ehrhard & Davis (1991). The result is a distortion of the 
recirculation cell and the droplet shape as shown in figure 6(b, c). If the absolute value 
of A? is large enough, an additional counterclockwise recirculation cell appears in the 
droplet as shown in figure 6(d).  In fact, such a cell is present for the conditions of figure 
6(c), but it is too small to see. 

The difference between the advancing and receding contact angles, !P = 8, - 8,, is 
called the contact-angle hysteresis. It ranges from zero for 8, = gR = 1, to one for 
@A = 1 and GR = 0. The effect of contact-angle hysteresis on the motion of a droplet for 
&? = 0 is shown in the steady-state parameter plot of figure 7, which is similar to that 
of figure 3. In region I, the distortion of the droplet due to the thennocapillary forces 
is insufficient to allow the contact lines to move after a transient period of spreading 

= 0; (b)  M = -0,25, $,,, = -0.002914, 
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FIGURE 7. Parameter plot of fi versus the contact-angle hysteresis Pfor the steady-state behaviour of 
a droplet with G = 0, 8, = 1, and M = 0. Solid lines are the numerical results and dashed lines are 
the asymptotic approximations. Region I, no motion ; 11, constant-velocity migration; 111, invalid - 
model behaviour. 0, 0, = 8, and 8, = gA, which is the onset of droplet migration; 0, 8,-eA = 
8, - 8, and 8, = 0, which is the largest physically possible value of N. The small droplet schematics 
to the right of the figure indicate the direction and relative magnitude of the contact-line motion in 
each of the marked regions. 

FIGURE 8. The half-width of a droplet corresponding to the two bounding curves shown in figure 7. 
Solid lines are the numerical results and the dashed line is the asymptotic approximation. 0, 
8, = GR and 8, = a,, which is the onset of droplet migration; 0, 8, -@, = 8, - 8, and f3, = 0, which 
is the largest physically possible value of N. 

or shrinking. In effect, the contact-angle hysteresis is large enough to hold the droplet 
motionless. In region 11, the applied temperature gradient produces a steady migration 
of the droplet. The model fails in region I11 because the left contact angle is less than 
zero. The half-width of the droplet corresponding to the two curves in figure 7 is shown 
in figure 8. 

When the hysteresis is zero, the droplet is never motionless. The droplet migrates as 
soon as the temperature gradient is imposed, and it ultimately reaches a steady-state 
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FIGURE 9. (a) The speed and (b) the half-width of a droplet, during constant-velocity migration, as 
a-function of the coqtact-angle Lysteresis Y for various values of the imposed temperature gradient 
Nand with G = 0, M = 0, and OA = 1. Solid lines are the numerical results and dashed lines are the 
asymptotic approximations. 

speed for I? not too large. As the hysteresis increases, the largest value of the applied 
temperature gradient and the corresponding droplet half-width for a motionless 
droplet increase. The upper limit for steady-state droplet migration decreases as the 
hysteresis increases. Thus, the range of possible values of #for a steady-state migration 
decreases. The numerical calculations show that for 0.94 < Y < 1 there is no regime of 
steady-state droplet migration. However, this result will almost surely be modified once 
the model is augmented to remedy the computational difficulties seen in region 111. The 
perturbation approximations shown in figure 7 are fairly accurate for the whole range 
of hysteresis. However, there is a slight maximum at Y = 0.8 in the lower curve that 
is not present in the numerical results, and the approximations show that there is no 
range of hysteresis where steady-state droplet migration is prohibited. The ap- 
proximation for the droplet half-width in figure 8 is only good for the curve bounding 
the motionless droplet and for small values of the contact-angle hysteresis. 
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FIGURE 10. (a) The speed and (b) the half-width ,Of a droplet, during constant-velocity migration, as 
a_function of the imposed temperature gradient N for various values of the Bond number G and with 
M = 0, 8, = 1, and gR = 0.8. 

Figures 9 (a) and 9 (b) show the droplet migration speed and half-width for a number 
of different values of fi versus the contact-angle hysteresis. For a fixed value of the 
applied temperature gradient, the speed does not change much as the contact-angle 
hysteresis increases. Instead, the droplet half-width increases to accommodate the 
change. For a fixed value of the contact-angle hysteresis, the droplet speed increases 
and its half-width decreases as I? increases as seen previously. 

The effect of gravity on the migration speed and half-width of a droplet is shown in 
figures 10(a) and lO(6) for the case of i@ = 0. For a fixed value of I?, increasing gravity 
increases both the width and the migration speed of the droplet. 

4.3. Transient response 
The transient response of the droplet is given by the solution of the contact-line 
differential equations (13c, d). The sum and difference of these equations yield first- 
order differential equations for the half-width a(t) = Xc, - c,) and the centreline 
position qt) = Xc, + c,) of the droplet. These two differential equations are solved 
numerically using either the perturbation approximation or the numerical solution for 
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FIGURE 1 1 .  The transient response of a droplet based on the perturbation approximation. The 
imposed temperature gradient N = 0.1 and A4 = O,@, = 1, and 8, = 0.8. (a) The droplet half-width 
and the droplet speed versus time t ,  and (b)  the free-surface profiles at I = 0 and 150. 

the contact angles. The results of such a calculation using the perturbation 
approximation with 2 = 0 and fi = 0.1 and with an initial width of a fully spread 
isothermal droplet are shown in figure 11. These parameter values correspond to an 
initial state of one-sided spreading and a final state of steady migration. In figure 11 (a), 
the droplet half-width is seen to increase monotonically to its final value. Intermediate 
results not shown in the figure indicate that one-sided spreading occurs during the time 
interval (0,2.75). After this, the droplet migrates to the right and stretches. Also shown 
in figure 11 (a) is the droplet speed, which decreases from its initial value and then 
slightly undershoots its final value. 

Two droplet profiles are shown in figure 11 (b). The first is the initial shape. This is 
slightly asymmetric because of the imposed temperature gradient. The second profile 
is for the dimensionless time of t = 150, which is well into the domain of steady-state 
migration of the droplet. Here, the droplet is slightly wider and more asymmetric, and 
the centreline has only migrated 0.235 dimensionless units to the right. This small 
migration is due to the very small migration speeds, and at least for this case, it 
supports the neglect of the term f ix  in the evolution equation. 

Figure 12 shows a transient calculation with fi = 0.2. For this value of fi, the initial 
and final behaviour is droplet migration. Both the droplet half-width and speed 
increase monotonically to their final values. However, the droplet speed stays almost 
constant during the first few units of time. In figure 12(b), the initial droplet profile is 
shown. It is slightly more asymmetric than the previous case because of the larger value 
of fi. The droplet speed is much larger in this case and so the droplet centreline has 
migrated a distance of 0.863 dimensionless units over 25 units of time as shown. 
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FIGURE 12. As figure 1 1 ,  but for = 0.2. (a) The droplet half-width and the droplet speed versus 
time t ,  and (6) the free-surface profiles at t = 0 and t = 25. 

5. Conclusions 
The behaviour of a two-dimensional liquid droplet on a horizontal solid surface with 

an imposed temperature gradient has been explored. The droplet is composed of a 
viscous liquid and is thin enough so that lubrication theory can be applied. The result 
is an evolution equation for the shape of the free surface of the droplet. This is coupled 
to a dynamic contact-line boundary condition relating the contact-line speed and the 
apparent contact angles that governs the motion of the contact lines. The mobility 
capillary number is assumed small and so the short transient associated with the 
evolution of the free surface for a fixed droplet width is ignored. Subsequent evolution 
of the free surface is determined by the motion of the contact lines. This theory gives 
a good approximation to the flow in the droplet, the shape of the free surface, and the 
motion of the contact lines. 

When a temperature gradient is applied to a droplet of a given width placed on a 
solid surface, a number of different initial contact-line behaviours may occur that 
depend on the two thermal parameters &? and A characterizing the heating. These 
behaviours include motionless contact lines, one- or two-sided spreading or shrinking, 
or migration of the entire droplet. After a transient period of a length that depends on 
the magnitude of the imposed heating, the droplet may remain motionless, or migrate 
down the temperature gradient with a constant shape. For large enough heating, a 
serious interpretation of the model says that one or both of the contact angles may 
become less than zero. In this case, the present model does not apply because there is 
no built-in mechanism to prevent this unphysical event from occurring. The behaviour 
under these conditions of intense heating is open to speculation and further exploration. 

The contact-line motions described above are produced by the fluid flow inside the 
droplet. The temperature gradient imposed on the solid surface produces a 
thermocapillary flow in the droplet that is directed along the free surface from the hot 
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contact line to the cold contact line. As this flow approaches the cold contact line, it 
is deflected back along the solid surface toward the hot end of the droplet. The resulting 
recirculation cell has a zero net mass flux at any vertical cross-section of the droplet. 
The deflection of the flow at the cold end of the droplet sets up a pressure gradient 
inside the droplet that drives the return flow and distorts the free surface. This 
distortion increases the contact angle at the cold end of the droplet and decreases the 
contact angle at the hot end. These changes in the contact angles force the motion of 
the contact lines through the dynamic contact-line boundary condition posed for this 
model. If the imposed temperature gradient is large enough, both contact lines will 
move in the direction of decreasing temperature. 

The single thermocapillary recirculation cell set up by the imposed temperature 
gradient becomes distorted because of thermal variations established by the heat 
transfer from the droplet to the surrounding passive gas. This is the effect studied by 
Ehrhard 8z Davis (1991). With no imposed temperature gradient in the solid, the heat 
transfer to a droplet that is colder than the surrounding gas produces a symmetric 
temperature variation along the free surface from the hotter top of the droplet to the 
colder contact lines. This thermal variation produces two thermocapillary recirculation 
cells, with the one on the right rotating in the clockwise direction and the one on the 
left rotating in the counterclockwise direction. When combined with the single recircu- 
lation cell produced by an imposed temperature gradient in which the temperature 
decreases to the right, the resulting thermocapillary flow is intensified on the right and 
decreased on the left. This shifts the centre of the recirculation cell toward the right side 
of the droplet as shown in figure 6. This modified flow field alters the contact angles 
in the droplet, and thereby changes the motion of the contact lines. 

The most interesting and perhaps useful behaviour seen in this work is the steady- 
state migration of the droplet down the imposed temperature gradient. Increasing this 
temperature gradient (larger fi)  increases the droplet speed and decreases its width. A 
decrease in the overall heating of the droplet by the solid (decreasing &) increases both 
the droplet speed and its width. This observation is consistent with the results of 
Ehrhard & Davis (1991) and Ehrhard (1993), which say that droplet cooling (& < 0) 
promotes spreading, leading to larger droplets, and heating (& > 0) inhibits spreading, 
leading to smaller droplets. Increasing the contact-angle hysteresis of the droplet 
increases the value of fi needed to produce a steady migration, but decreases the value 
of fi at which the model fails. Once the droplet is migrating at a constant velocity, 
increasing the contact-angle hysteresis does not change the speed much, but the droplet 
width increases. Finally, an increase in the gravitational body force measured by the 
Bond number G increases both the droplet migration speed and its width, as might be 
expected since gravity would tend to flatten the droplet. 

One of the more arbitrary assumptions made in this paper was to neglect the fix- 
term in the evolution equation (10). A qualitative understanding of the effect of this 
term on the motion of a steady migrating droplet starts with noting that as the droplet 
moves down the solid in the direction of decreasing temperature, iiexperiences a larger 
overall cooling by the solid that is equivalent to a decrease in M .  From figure 5 ( 4 ,  
decreasing & for a fixed fi causes the droplet speed and width to increase. Thus, the 
effect of the fix-term is to accelerate and widen the droplet as it moves down the 
imposed temperature gradient on the solid surface. 

A physical way to eliminate the effect of the fix-term is to impose the same 
temperature gradient on both the solid and the gas above the droplet so that there 
is always a constant temperature difference between the two. In this situation, the 
fix-term does not appear in the final evolution equation. 
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Appendix. Perturbation approximations 

approximation to the line 8, = 8, where 8 is either g,, eR, or 0 is 
Consider the initial shape of a droplet with a given half-width a. The perturbation 

A =  A&$-+-&)]+-#-&]. 
The perturbation approximation to the line 8, = 8 is 

A =  Iq-s+;(e-&)]-;p-&]. 1 

For a droplet with the contact angles a, = 1 and gR = 0.8 and with a half-width of 
a = (3/28,)’12 = (3/2)112, the lines shown on figure 2 are 

In region VI of figure 2, the droplet immediately begins to migrate. It will tend to 
stretch if the speed of the right contact line is larger than the speed of the left contact 
line. This is given by the relation 8,-gA 2 gR-8,. The perturbation approximation 
for stretching is thus 

(A 9) 
I Ll< +/a2  - 8, - gRl. 

For the present special case, this is i@ < 0.163299. Note that for this curve, a higher- 
order approximation is needed to capture the behaviour of the system. 

Figure 3 is a domain map showing the steady-state response of the system. The 
boundary of region I for a motionless droplet is given by 8, = 8, and 8, = gR. This 
gives a perturbation approximation for the droplet half-width and the applied 
temperature gradient of 

a 

a = a, -a: &/6, a, = [3/(8, + gR)]”2, (A 10) 
(A 11) A = 88, - gR) [ 1 /a:  + i@/6]. 

For the present special case, this yields 

a = 1.290994-0.462963ik, 

A = 0.0464758+0.0166667i@ 

Region I1 of figure 3 is constant-speed droplet migration. This is given by the 
equation 8, - eA = eR - 8,. The droplet half-width in this case is also given by equation 
(A 10). The droplet speed V is 

V = { -K8, - gR) +a: f i 1  -a: i@/6]}m. (A 14) 

Finally, region I11 of figure 3 is unknown because the rear contact angle is less than 
zero. The boundary of the region is given by the line 8, = 0 and the constant-speed 
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equation 0, - 8, = aR - Or. This results in a droplet half-width still given by equation 
(A lo), and an imposed temperature gradient of 

A = !j(GA + GR) [ 1 /a: + &?/6]. (A 15) 

A= 0.418282+0.15k. (A 16) 

For the present special case, this yields 
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